

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

<u>MODEL ANSWER</u> WINTER– 18 EXAMINATION

Subject Code:

22320

Subject Title: Digital Techniques

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.N.		Scheme
Q.1		Attempt any FIVE of the following :	Total Marks
			10
	a)	Write the radix of binary, octal, decimal and hexadecimal number system.	2M
	Ans:	Radix of: Binary – 2	¹ / ₂ M each
		Octal - 8	
		Decimal - 10	
		Hexadecimal -16	
	b)	Draw the circuit diagram for AND and OR gates using diodes.	2M
	Ans:		1 M each
		Diode AND gate :Diode OR gate :	
		$ \begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	

SOP form: Y = AB + BC + AC POS form: Y = (A + B) (B + C) (A + C) State the necessity of multiplexer. Necessity of Multiplexer: • It reduces the number of wires required to pass data from source to destination. • For minimizing the hardware circuit. • For simplifying logic design. • In most digital circuits, many signals or channels are to be transmitted.	1 M each (any proper example can be considered)2M2M2 M(any two proper points)
 Y = (A + B) (B + C) (A + C) State the necessity of multiplexer. Necessity of Multiplexer: It reduces the number of wires required to pass data from source to destination. For minimizing the hardware circuit. For simplifying logic design. In most digital circuits, many signals or channels are to be transmitted. 	2M 2 M(any two proper points)
State the necessity of multiplexer. Necessity of Multiplexer: • It reduces the number of wires required to pass data from source to destination. • For minimizing the hardware circuit. • For simplifying logic design. • In most digital circuits, many signals or channels are to be transmitted.	2M 2 M(any two proper points)
 Necessity of Multiplexer: It reduces the number of wires required to pass data from source to destination. For minimizing the hardware circuit. For simplifying logic design. In most digital circuits, many signals or channels are to be transmitted, 	2 M(any two proper points)
 and then it becomes necessary to send the data on a single line simultaneously. Reduces the cost as sending many signals separately is expensive and requires more wires to send. 	
Draw logic diagram of T flip-flop and give its truth table.	2M
Note: Diagram Using logic gates with proper connection also can be consider. Logic Diagram: $T \circ \downarrow^{J}$ $CK \circ \downarrow^{J-K}$ FF	1M (any one diagram) 1 M
	Draw logic diagram of T flip-flop and give its truth table. Note: Diagram Using logic gates with proper connection also can be consider. Logic Diagram: $T \circ - Pr$ Pr $T \circ - Pr$ $T \circ - Pr$ $CK \circ - FF$ Q K FF Q $T \circ - Pr$ $CK \circ - FF$ Q K PF Q $T \circ - Pr$ $T \circ - Pr$ Pr Q $T \circ - Pr$ $V \circ Pr$

1	<u>1 rum 1</u>	able:				
		Inj T	out ^{'n}	Output Q _{n+1}	Operation Performed	
		()	Qn	No change	
		1	[\overline{Q}_n	Toggle	
f)	Define 1 Mod-6 (nodulus counter.	of a co	unter. Write the nur	nbers of flip flops required for	· 2M
Ans:	• N c • 7	Modulus countes. The num	of coun bers of f	ter is defined as num	ber of states/clock the counter Mod-6 counter is 3.	Definition: 1 M No. of FF- 1M
g)	State fu	nction o	of preset	and clear in flip flo	р.	2M
	i • I f	s uncerta Hence, th function	ain i.e. m ne functi of clear	hay be $Q = 1$ or $Q = 0$ on of preset is to set a is to clear a flip flop). a flip flop i.e. $Q = 1$ and the i.e. $Q = 0$.	function (table is optional)
		Inputs		Output	Operation performed	
	СК	Cr	Pr	Q	New Jay an aven	
		1	1	Q_{n+1} (Table 7.1)	Normal FLIP-FLOP	
	0	0	1	0	Clear	
	0	0	1 0	0 1	Clear Preset	

h)	Convert –	4M
0)	$(255)_{10} = (?)_{16} = (?)_8$	
	$(157)_{10} = (?)_{BCD} = (?)_{Excess3}$	
Ans:	(i) $(255)_{10} = (FF)_{16} = (377)_8$	
	$(255)_{10} = (FF)_{16}$	1 M
	16 255 F (15)	
	15 F	
	$(255)_{10} = (377)_8$	
	$\frac{8}{255}$ 7 1	1 M
	$\frac{8 31}{3 3}$	
	(1) $(157)_{10} = (0001010101111)_{BCD} = (010010001010)_{Excess3}$	
	$(157)_{10} = (000101010111)_{BCD}$	
	<u>1</u> <u>5</u> <u>7</u> 0001 0101 0111	1 M
	$(000101010111)_{BCD} = (010010001010)_{Excess3}$	
	11 111 111 0001 0101 0111	1 M
	+ 0011 0011 0011 0100 1000 1010	
c)	Draw the symbol, truth table and logic expression of any one universal logic gate. Write reason why it is called universal gate.	4 M
Ans:	(Note: Any one universal gate has to be considered.)	
	Universal Gates: NAND or NORSymbol:	1 M
	Truth table:	
	A B Y A B Y	1 M
	Logic expression:	
	$Y = \overline{A \cdot B}$ $Y = \overline{(A + B)}$	1 M
	$\mathbf{Y} = (\mathbf{A} + \mathbf{B})$ NAND and NOP gates are called as "Universal Cate" as it is possible to	
	implement any Boolean expression using these gates.	1 M

Q. 3		Attempt any THREE:			12-Total
	a)	Compare TTL and CMG(i)Propagation of(ii)Power Dissipa(iii)Fan-out(iv)Basic gate	Marks 4M		
	Ans:	<u>NOTE :- (Relev</u>	1 Marks		
		Parameter	each point		
		Propagation delay			
		Power Dissipation			
		Fan-out			
		Basic gate			
	b)	Describe the function of simplification and logic	4M		
		A full adder is a combinat three bits, the two input bits Block diagram :	tional logic circuit that per its A and B, and carry C fr	forms addition between rom the previous bit.	1M
					1M

c)	Realize the basic logic gates, NOT, OR and AND gates using NOR gates only.	4M						
Ans:	(NOT GATE USING NOR GATE:1 M)	1M						
	where, $X = A$ NOR A $x = \overline{A}$							
	(AND GATE USING NOR GATE:1.5 MARKS)							
		1.5M						
	$\overline{\mathbf{Q}}=\bar{\mathbf{A}}+\bar{\mathbf{B}}=\bar{\mathbf{A}}+\bar{\mathbf{B}}$							
	$=\overline{\mathbf{A}.\mathbf{B}}$ $= \mathbf{A}.\mathbf{B}$							
	(OR GATE USING NOR GATE:1.5 MARKS)							
		1.5 M						
	$\mathbf{Q} = \overline{\mathbf{A} + \mathbf{B}}$ $= \mathbf{A} + \mathbf{B}$							
d)	Describe the working of JK flip-flop with its truth table and logic diagram.	4M						
Ans:	(Diagram-2 M, Working-1M, Truth table-1M)							
	<u>Truth Table :-</u>	1M						
	Truth Table							
	1 1 † Q ₀ (toggles)							

			Clock Pulse No	QA	QB	QC	QD		
			0	0	0	0	0		
			1	1	0	0	0		
			2	0	1	0	0		
			3	0	0	1	0		
			4	0	0	0	1		
			5	0	0	0	0		
_									
-	b)	Draw 16:1 M	UX tree using 4:1	MUX.					4M
	Ans:	Diagram :-							
		10 11 12 13 14 15 16 17 18 19 110 111 111 111 111 112 113 114 115	4X1 MUX ↑ ↑ S1 S0 4X1 MUX ↑ ↑ S1 S0 4X1 MUX ↑ ↑ S1 S0 4X1 MUX ↑ ↑ S1 S0 4X1 MUX ↑ ↑ S1 S0			4X1 MUX 53 52	2	Output (f)	4M

c)	Calculate analog output of 4 bit DAC for digital input 1101. Assume VFS = 5V.	4M						
Ans:	(Formula- 1M, Correct problem solving- 3M)							
	<u>Formula :-</u>							
	$V_{R} = V_{FS}$ $V_{o} = V_{R} [d_{1} 2^{-1} + d_{2} 2^{-2} + + d_{n} 2^{-n}]$							
	$= 5(1x2^{-1} + 1x2^{-2} + 0x2^{-3} + 1x2^{-4})$ = 5(0.5+0.25+0+0.0625) = 4.0625 Volts							
	OR							
	$V_{FS} = V_R \cdot \left(\frac{b3}{2} + \frac{b2}{4} + \frac{b1}{8} + \frac{b0}{16}\right)$							
	Note – (Since V_R is not given find V_R)							
	Full Scale o/p mean	marks for Vo						
	b3 b2 b1 b0 = 1111							
	$V_{FS} = 5V$							
	$5 = V_R \cdot \left(\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16}\right)$							
	$\mathbf{V}_{\mathbf{R}}=5.33$							
	For digital i/p b3 b2 b1 b0 = 1101							
	$V_0 = 5.33 \left(\frac{1}{2} + \frac{1}{4} + \frac{0}{8} + \frac{1}{16}\right)$							
	$\mathbf{V}_0 = \mathbf{4.33V}$							
d)	State De Morgan's theorem and prove any one.	4M						
Ans:	(Each State and proof using table- 2M each)							
		2M						

		i) $\overline{AB} = \overline{A}$	$\overline{A} + \overline{B}$									
		It states t	hat complin	nent of prod	uct is equal	to sum of t	heir complimen	ts.				
		1	2	3	4	5	6					
		А	В	AB	Ā	\overline{B}	$\overline{A} + \overline{B}$					
		0	0	1	1	1	1					
		0	1	1	1	0	1					
		1	0	1	0	1	1					
		1	1	0	0	0	0					
		Column 03	= column ()6				2M				
		i.e. $\overline{AB} = \overline{AB}$	$\overline{4} + \overline{B}$					2111				
		Hence proved										
		OP										
		UK										
		ii) $\overline{A+B} =$	$\overline{A} \cdot \overline{B}$					I				
		It states th	at complem	ent of sum i	is equal to p	roduct of th	neir complement	s.				
		1	2	3	4	5	6					
		A	B	A+B	<u>A</u>	<u>B</u>	$A \cdot B$					
		0	1	0	1	0	0					
		1	0	0	0	1	0					
		1	1	0	0	0	0					
		Column 03	3 = column	06								
		$\therefore A + B =$ Hence pro	= A·B ved									
		fience pro	· cu.					1				
	e)	Design one d	ligit BCD A	dder using	IC 7483							
	- /	8	8	8								
	Ans:	(Diagram:4)	M)									
		(Note: Labe	led combina	tional circu	it can he dro	ıwn usino u	niversal gate	4M				
		also)					and guild					

	NOW at	uu (1	1 + 1	11) ₂ 0001 11101	and (11 11		1)2							
	discard Therefo	1 I the ore fi	0 carry inal	1111 → (y gen answ	0 Carry erate ver w	y is gen ed vill be	nerate (0111	d so ar 10)2 =	15wer (30)2	is in p	ositive	e form	, so will	
b)	Design	a 4	bit s	synch	iron	ous co	unter	and d	lraw i	ts logi	c diag	ram.		6M
Ans:	State 7	Fable	e:											
		Pr	resen	t stat	e	D÷	Next	state	A ±	F	lip flo	p inpu	ts	
		D	0	в	A	D+	C+	B+	A+ 1	I _D	1 _C	1 _B	1 _A	
		0	0	0	1	0	0	1	1	0	0	1	1	
		0	0	1	0	0	0	1	1	0	0	0	1	2M-Stat
		0	0	1	1	0	1	0	0	0	1	1	1	table
		0	1	0	0	0	1	0	1	0	0	0	1	
		0	1	0	1	0	1	1	0	0	0	1	1	
		0	1	1	0	0	1	1	1	0	0	0	1	
		0	1	1	1	1	0	0	0	1	1	1	1	
		1	0	0	0	1	0	0	1	0	0	0	1	
		1	0	0	1	1	0	1	0	0	0	1	1	
		1	0	1	0	1	0	1	1	0	0	0	1	
		1	0	1	1	1	1	0	0	0	1	1	1	
		1	1	0	0	1	1	0	1	0	0	0	1	
		1	1	0	1	1	1	1	0	0	0	1	1	
		1	1	1	0	1	1	1	1	0	0	0	1	
	L	1	1	1	1	0	0	0	0	1	1	1	1	

	-
next bit is set to 1 and the same test is done continuing this binary search until every bit in the SAR has been tested. The resulting code is the digital approximation of the sampled input voltage and is finally output by DAC at end of the conversion (EOC).	
Resolution and conversion time associate with ADC-	
Resolution: It is the maximum number of digital output codes. Resolution= 2^n (OR) It is defined as the ratio of change in the value of input analog voltage required to change the digital output by 1 LSB. \therefore Resolution = $\frac{V_{FS}}{2^n - 1}$	1 Marks each
Conversion time: The time difference between two instants i.e. 'to' where SOC signal is given as input to the ADC and 't1' where EOC signal we get as output from ADC. it should be small as possible.	
<pre></pre>	

Q.6		Attempt an	Total Marks						
	a)	Design 4 bit	t Binary to G	Fray code c	onve	rter.			6M
	Ans:	Truth Table	2M for truth table						
			Sinary Input	D .	C.	Gray		C	1/2m for
		$\begin{array}{c c} \mathbf{D3} & \mathbf{D2} \\ 0 & 0 \end{array}$		D0 0	<u>G3</u>				each output
				0 1	0			1	equation
			1	0	0	0	1	1	2M for
		0 0	1	1	0	0	1	0	realization
		$\begin{array}{c c} 0 & 0 \\ \hline 0 & 1 \end{array}$	0	0	0	1	1	0	using gates
		0 1	0	1	0	1	1	1	
		0 1	1	0	0	1	0	1	
		0 1	1	1	0	1	0	0	
		1 0	0	0	1	1	0	0	
		1 0	0	1	1	1	0	1	
		1 0	1	0	1	1	1	1	
		1 0	1	1	1	1	1	0	
		1 1	0	0	1	0	1	0	
			0	1	1	0			
		$\begin{array}{ c c c } 1 & 1 \\ \hline 1 & 1 \end{array}$	1	0 1	1 1		0	0	
		K-MAP FO	R G3·	•	<u> </u>	0	U	U	
			R 05.						
		B1B	0 00	01		"11	10		
		6382							
			n			•	0		
						U	U		
								_	
		01	0	O		0	O		
								_	
		11	1	1		1	1		
		10	1	1		1			
						•			
		G3=B3							

•		•		
Ans:	Daramatar	Volatila momory	Non Volatila momory	
	definition	Memory required electrical power to keep	Memory that will keep storing its information	Any 3poir (each 1
		information stored is	without the need of	mark)
		called volatile memory	called nonvolatile	
			memory.	
	classification	All RAMs	ROMs, EPROM, magnetic memories	
	Effect of power	Stored information	No effect of power	
		is retained only as	on stored	
		long as power is on.	information	4
	applications	For temporary	For permanent	
		storage	storage of	
			information	
	2 SRAM with DRAM m	nemory	mornation	
	2. SRAM with DRAM m Parameter	nemory SRAM	DRAM	
	2. SRAM with DRAM m Parameter Circuit configuration	nemory SRAM Each SRAM cell is	DRAM Each cell is one	
	2. SRAM with DRAM m Parameter Circuit configuration	emory SRAM Each SRAM cell is a flip flop	DRAM Each cell is one MOSFET & a capacitor	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored	SRAM Each SRAM cell is a flip flop In the form of	DRAM Each cell is one MOSFET & a capacitor In the form of charges	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored	SRAM Each SRAM cell is a flip flop In the form of voltage	DRAM Each cell is one MOSFET & a capacitor In the form of charges	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell	emory SRAM Each SRAM cell is a flip flop In the form of voltage More	DRAM Each cell is one MOSFET & a capacitor In the form of charges Less	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell Storage capacity	INTERIOR OF CONTRACT OF CONTRACT.	DRAM Each cell is one MOSFET & a capacitor In the form of charges Less More	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell Storage capacity Refreshing	nemory SRAM Each SRAM cell is a flip flop In the form of voltage More Less It does not require refreshing	DRAM Each cell is one MOSFET & a capacitor In the form of charges Less More It require refreshing.	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell Storage capacity Refreshing Cost	sram SRAM Each SRAM cell is a flip flop In the form of voltage More Less It does not require refreshing It is expensive	DRAMEach cell is oneMOSFET & a capacitorIn the form of chargesLessMoreIt require refreshing.It is cheaper	
	2. SRAM with DRAM m Parameter Circuit configuration Bits stored No of components per cell Storage capacity Refreshing Cost Speed	sram SRAM Each SRAM cell is a flip flop In the form of voltage More Less It does not require refreshing It is expensive It is faster	DRAM Each cell is one MOSFET & a capacitor In the form of charges Less More It require refreshing. It is cheaper It is slower	

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

MAHARASHT (Autonomous) (ISO/IEC - 2700 :tified)

SUMMER-19 EXAMINATION

Subject Name: Digital technique

Model Answer

Subject Code:

22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers				Marking Scheme
1	(A)	Attempt any FIVE of the following:				
	(a)	List the binary,octal ar	d hexadecimal numb	ers for decimal no. () to 15	2M
	Ans:					2M
		DECIMAL	BINARY	OCTAL	HEXADECIMAL	
		0	0000	0	0	
		1	0001	1	1	
		2	0010	2	2	
		3	0011	3	3	
		4	0100	4	4	
		5	0101	5	5	
		6	0110	6	6	
		7	0111	7	7	
		8	1000	10	8	

Subject Name: Digital technique

SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

22320

	9	1001	11	9	
	10	1010	12	A	
	11	1011	13	В	
	12	1100	14	С	
	13	1101	15	D	
	14	1110	16	E	
	15	1111	17	F	
(b)	Define fan-in and fan-ou	t of a gate.			2M
	can accept. Most transist some have more than tw	o. A typical logic g	ate has a fan-in of 1 o	1 2.	
	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates.	o. A typical logic g fines the maximur . Most transistor-t	ate nas a fan-in of 1 o n number of digital inj ransistor logic (TTL) §	outs that the output ogates can feed up to 2	of a ¹⁰ 1M
(c)	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch	o. A typical logic g fines the maximur . Most transistor-t ronous and asyn	ate nas a fan-in of 1 o n number of digital ing ransistor logic (TTL) g chronous counter (ang	y two points).	of a ¹⁰ 1M 2M
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch	o. A typical logic g fines the maximur . Most transistor-t ronous and asynd	ate nas a fan-in of 1 o n number of digital ing ransistor logic (TTL) g chronous counter (ang	y two points).	of a 10 1M 2M
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch	o. A typical logic g fines the maximur . Most transistor-t ronous and async ounter	ate nas a fan-in of 1 o n number of digital ing ransistor logic (TTL) g chronous counter (ang	y two points).	of a 10 1M 2M Any
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are	o. A typical logic g fines the maximur . Most transistor-t ronous and async ounter triggered	ate nas a ran-in of 1 o n number of digital ing ransistor logic (TTL) g chronous counter (any Asynchronou Different clock	y two points).	of a 10 1M 2M Any 1M
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock.	o. A typical logic g fines the maximur . Most transistor-t ronous and asynd ounter triggered	ate nas a ran-in of 1 o n number of digital ing ransistor logic (TTL) g chronous counter (any Different clock different flip f	y two points). IS Counter (is applied to lops.	of a 10 2M Any 1M for a com
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock. It is faster.	o. A typical logic g fines the maximur . Most transistor-t ronous and async ounter triggered	Asynchronou Asynchronou Different clock different flip f It is lower	y two points).	of a 10 2M Any 1M for com son
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock. It is faster. Design is comple	o. A typical logic g fines the maximur . Most transistor-t ronous and asynd ounter triggered	Asynchronou Different clock different flip f It is lower I Design is rel	y two points). IS Counter (is applied to lops. atively easy.	of a 10 2M Any 1M for com son
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock. It is faster. Design is comple Decoding errors	o. A typical logic g fines the maximur . Most transistor-t ronous and async ounter triggered ex. not present.	Asynchronou Different clock different flip f It is lower I Design is rel Decoding erro	atively easy.	of a 10 2M Any 1M for com son
(c) Ans:	can accept. Most transist some have more than tw Fan-out is a term that de single logic gate can feed other digital gates. Compare between synch Synchronous C All flip flops are with same clock. It is faster. Design is comple Decoding errors Any required sec	o. A typical logic g fines the maximur . Most transistor-t ronous and asynd ounter triggered ex. not present. quence can	Asynchronou Asynchronou Different clock different flip f It is lower I Design is rel Decoding erro Only fixed sec	atively easy.	of a 10 2M Any 1M for a com son

BOARD OF TECHNICAL EDUCATION

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Digital technique

_Subject Code:

22320

(d)	State two specification of DAC.	2M
Ans:	1.Resolution:	Any
	Resolution is defined as the ratio of change in analog output voltage resulting from a	two
	change of 1 LSB at the digital input VFS is defined as the full scale analog output	1M
	Voltage i.e. the analog output voltage when all the digital input with all digits 1. Posolution = $VES /(2n - 1)$	each
	2. Accuracy:	
	Accuracy indicates how close the analog output voltage is to its theoretical value. It indicates	
	the deviation of actual output from the theoretical value. Accuracy depends on the accuracy	
	of the resistors used in the ladder, and the precision of the reference voltage used. Accuracy	
	is always specified in terms of percentage of the full scale output that means maximum	
	output voltage	
	3. Linearity:	
	I he relation between the digital input and analog output should be linear.	
	resistive networks	
	4. Temperature sensitivity:	
	The analog output voltage of D to A converter should not change due to changes in	
	temperature.	
	But practically the output is a function of temperature. It is so because the resistance values	
	and OPAMP parameters change with changes in temperature.	
	5. Settling time:	
	The time required to settle the analog output within the final value, after the change in	
	digital input is called as settling time.	
	6 Long term drift	
	Long term drift are mainly due to resistor and semiconductor aging and can affect all the	
	characteristics.	
	Characteristics mainly affected are linearity, speed etc.	
	7. Supply rejection	
	Supply rejection indicates the ability of DAC to maintain scale, linearity and other important	
	characteristics when the supply voltage is varied.	
	Supply rejection is usually specified as percentage of full scale change at or near full scale	
	8 Sneed.	
	It is defined as the time needed to perform a conversion from digital to analog. It is also	
	defined as the number of conversions that can be performed per second	

(

ubject	Name: Digital technique	SUMMER-19 EXAMINATIOI Model Answer	N _Subject Code:	22320	
e)	Write the gray code to	given no.(1101) ₂ =(?) Gray.			2M
Ans:	11 - EX-OR	EX-OR EX-OR	Binary Co	ode	2M
	1 0	1 1	Gray Co	de	
f)	Define encoder, write th	ne IC number of IC used asdecimal	I to BCD encoder.		2M
Ans:	An encoder is a device o another, for the purpose	r circuit that converts information of standardization, speed or comp	from one format or pression.	code to	Defina on-1N
	Decimal to BCD encoder	- IC- 74147			IC-1M
g)	Draw the logical symbol	ofEX-OR and EX-NOR gate.			2M
Ans:	EX-OR GATE:-	$\hat{A} \longrightarrow Out \\ B \longrightarrow A$	$A \cdot \overline{B} + \overline{A} \cdot B$ $\cdot B + \overline{A} \cdot \overline{B}$		EX-OR 1M EX-NC 1M
					1
Sub Q. N.		Answers			Marki

No.	Q. N.		Scheme
2		Attempt any THREE of the following:	12- Total Marks

a)	Converte	454
a)	Convert:	4171
	(i) $(AD92.BCA)_{16} = (?)_{10} = (?)_8 = (?)_2$	
Ans:	(AD92.BCA) ₁₆	1.5N
	$= (10 \times 16^{3}) + (13 \times 16^{2}) + (9 \times 16^{1}) + (2 \times 16^{0}) + (11 \times 16^{-1}) + (12 \times 16^{-2}) + (10 \times 16^{-3})$	
	= 40960 + 3328 + 144 + 2 + 0.6857 + 0.046875 + 0.00244	
	= (44434.7368) ₁₀	1M
		1.5N
	(AD92.BCA) ₁₆ =(1010 1101 1001 0010.1011 1100 1010) ₂	
	(AD92.BCA) ₁₆ = (1010 1101 1001 0010.1011 1100 1010) ₂	
	=(001 010 110 110 010 010.101 111 001 010) ₂	
	=(126622.5712) ₈	
	Note: any other method can be considered.	
b)	Simplify the following and realize it	4M
	$Y = A + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + ABC + \overline{A}\overline{B}$	
Ans:	$Y = A + \overline{A}\overline{B}C + \overline{A}\overline{B}\overline{C} + ABC + \overline{A}\overline{B}$	4M

SUMMER-19 EXAMINATION 22320 Subject Name: Digital technique _Subject Code: Model Answer the gate. Speed of Operation: Speed of a logic circuit is determined by the time between the application of input and change in the output of the circuit. Draw logic diagram of half adder circuit d) Ans: в Sum Carry OR

4M

4M

Note: logic diagram using NAND/NOR also can be considered.

Q.	Sub	Answers	Marking
No.	Q. N.		Scheme
3		Attempt any THREE of the following :	12- Total Marks

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Digital technique

_Subject Code:

22320

SUMMER-19 EXAMINATION
Subject Name: Digital technique <u>Model Answer</u>

_Subject Code:

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

	CLK		INPUTS	OU	TPUTS	REMARK	
		S	R	Qn+1	$\overline{Qn+1}$		
	0	x	X	Qn	Qn	No change	
	1	0	0	Qn	Qn	No change	
	1	0	1	0	1	Reset	
	1	1	0	1	0	Set	
	1	1	1	?	?	Forbidden	
c)	Give classi	fication of me	mory and compa	re RAM and ROM	/I (any four poin	its)	4M
			MEM	IORY			ation 2M
	PRIMA ROM PPH -EH -EH	RY ROM PROM EPROM	R/ SRAM	AM DRAN	SECON —HI —FD —DV —Pe	DARY DD DD 7D ndrive	Consid even if Second ry memo is not writter
	PRIMA ROM -PH -EH -EH	RY ROM PROM EPROM	RA SRAM AM and ROM	AM DRAM	SECON HI FD DV Pe	DARY DD DD 7D ndrive	Consid even if Second ry memo is not writter
	PRIMA ROM PH EH EH	RY ROM PROM EPROM on between R R/ emporary Stora	SRAM SRAM AM and ROM	AM DRAM 1.Permanet	SECON HI FD DV Pe M RAM nt Storage.	DARY DD DD 7D ndrive	Consid even if Second ry memo is not written
	PRIMA ROM PPH -EH -EH Compariso	RY ROM PROM EPROM on between R R/ emporary Stora	RAM SRAM AM and ROM AM age. 35.	DRAM DRAM 1.Permaner 2.Store data	SECON HI FD DV Pe M M RAM nt Storage. a in GBs.	DARY DD DD 7D ndrive	Consid even if Second ry memo is not writter

SUMMER-19 EXAMINATION

Model Answer

Subject Name: Digital technique

_Subject Code:

		4. Writing data is Faster.	4.Writing data is Slower.	
				Compari
	-1)	Ctata the explications of shift vestator		
	a)	State the applications of shift register.		4171
	Ans:	1] Shift register is used as Parallel to se serial data. It is utilized at the transmitt block.	erial converter, which converts the parallel data into er section after Analog to Digital Converter (ADC)	Each Applicati on 1M
		2] Shift register is used as Serial to para parallel data. It is utilized at the receive block.	Illel converter, which converts the serial data into r section before Digital to Analog Converter (DAC)	Any other relevant applicati
		3] Shift register along with some addition ones. Hence, it is used as sequence gen	onal gate(s) generate the sequence of zeros and erator.	on must b e consider
		4] Shift registers are also used as count type of output from right most D flip-flo counter and Johnson Ring counter.	ers . There are two types of counters based on the op is connected to the serial input. Those are Ring	ed
Q. No.	Sub Q. N.		Answers	Marking Scheme
4		Attempt any THREE of the following :		12- Total Marks
	(a)	Subtract the given number using 2's co	mpliment method:	4M
		(i) $(11011)_2 - (11100)_2$ (ii) $(1010)_2 - (101)_2$		
	Ans:	i) Subtract (11011) ₂ – (11100) ₂	using 2's complement binary arithmetic.	
		Solution:		
		$(11011)_2 - (11100)_2$		
		Now,		
		2's complement of (11100) ₂ = 1's comple	ement of (11100) 2+1	2's
		1's complement of $(11100)_2 = (00011)_2$		comple

ubject	Name: Digital technique		SUN <u>N</u>	/ME lode	R-19 el An) EX <u>swe</u>	AMINATI <u>r</u>	ION _Subject Code:	22320	
	2's complement = 00011+:	1 = (0010	0						1M
	Therefore,		1	1	0	1	1			
	+		0	0	1	0	0			
			1	1	1	1	1			
	There is no carry it indicate	es tł	nat r	esult	s is i	nega	tive and	in 2's complement for	m i.e.(11111) ₂ .	
	Therefore, for getting true	val	ue i.e	e.(+1	.) ta	ke 2	's comple	ement of (11111) is	- (72	
	1's complement + 1			•			·			Fina
	= 00000 + 1									Ans
	Ans= (00001) ₂									1M
	Ans: (11011) ₂ – (11100) ₂ =	2's	com	plen	nent	of (2	11111) ₂ =	· (-1) ₁₀		
	ii) Subtract (1010))2 -	(101	L)₂us	sing	2's c	ompleme	ent binary arithmetic.		
	2's complement of (0101) ₂	2 = 1	's co	mpl	eme	nt o	f (0101) 2	+1		
	1's complement of (0101) ₂	2 = (101)) ₂						
	2's complement = 1010+1	= 10)11							2's
	Therefore,	1	0	1	0					com
	+	1	0	1	1					mer 1M
		т	0	T	Т					
	1									
	1	0	1	0	1					
	There is carry ignore it, wh	nich	indic	ates	s tha	t res	ults is po	sitive i.e.(+5)		
	= (0101) ₂									
	Ans: (1010) ₂ - (101) ₂ = (01	101)	₂ = (+	·5) ₁₀						Fina Ansv 1M
(b)	Stare De-Morgan's theore	em a	and	prov	e an	y on	е			4M

SUMMER-19 EXAMINATION _Subject Code: 22320 Subject Name: Digital technique Model Answer De Morgan's 1st Theorem: Ans: Stateme It states that the compliment of sum is equal to the product of the compliment of nts-1M individual variables. each $(\overline{A+B}) = \overline{A} \ \overline{B}$ Anyone Proof: proof -2M \overline{B} $(\overline{A+B})$ $\overline{A} \ \overline{B}$ Ā В A+B Α 0 1 1 0 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 1 0 De Morgan's 2nd Theorem: It states that the compliment of product is equal to the sum of the compliments of individual variables. $(\overline{AB}) = \overline{A} + \overline{B}$ Proof: $\overline{A} + \overline{B}$ \overline{B} A.B (\overline{AB}) \overline{A} В Α 0 1 1 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 1 1 0 0 0 0 (c) 4M Compare between PLA and PAL.

SUMMER-19 EXAMINATION

Subject Name: Digital technique

Model Answer

_Subject Code: 22320

Ans:	PLA	PAL	Any four	
	 Both AND and OR arrays are programmable 	 OR array is fixed and AND array is programmable. 	1M each	
	2) Costliest and complex than PAL	2) Cheaper and simpler		
	 AND array can be programmed to get desired minterms. 	 AND array can be programmed to get desired minterm. 		
	 Large number of functions can be implemented. 	 Provides the limited number of functions. 		
	5) Provides more programming flexibility.	5) Offers less flexibility, but more likely used.		
(d)	Reduce the following expression using K-map $F(A \cap C \cap C) = \pi M (1 - 3 - 5 - 7 - 8 - 10 - 14)$	and implement it	4M	
Ans:			Kman-	
71101	AB 00 01	11 10	1M	
		0 (A+D)	Pairs- 1.5M	
	0 0 0 1	3 2	Final Ans-	
	01 4 5	0 7 6	1.5M	
	1 1 12 13	$15 \qquad 0 \qquad (\overline{A} + \overline{C} + D)$		
	10 8 9	11 0 10		
		(A+B+D)		
	$F(A,B,C,D)=(A+\overline{D})(\overline{A}+\overline{C}+D)(\overline{A}+\overline{D})$	3+D)		

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.		Attempt any TWO of the following:	12- Total Marks
	a)	Design BCD to seven segment decoder using IC 7447 with its truth table.	6M

BOARD OF TECHNICAL EDUCATION

(ISO/IEC - 2700 ·tified)

MAHARASHT (Autonomous)

SUMMER-19 EXAMINATION

SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

	Commo	n Cat	hoc	le Di	splay:								
				P 1	SV		D						
	ć	nse -	-	VLE	_	MAL	-	cimal	output				
	BOD	c	1			AN	6	-					
	inputsy	0 -	1	Je con	tel -	ww	5 f]	, 1	6	Com	mon		
		8 -	_		10	m	ė .	-	+	7 (othod	le	
	louis 1.	F	Ar Rith	E.	-	M	F e		C				
	0	4	163	GN	0	w	9	d				- X.	
				-1-			-		-				
	Truth	Tabl	le										
		BC	8 ir	duge	-	Segp	vent a	odee	June	T		Dianian	
		D	C	BA	a	4	3	d	c	f	3	outputy	
	-	0	0	00	1	1	1	1	1	1	0	11	
		0	0	01	0	1	1	0	0	0	0	1	
		0	0	10	1	1	0	1	1	0	1	2	
		0	0	1 1	1	1	1	1	0	0	1	=:	
		0	1 0	0 0	0	1	1	0	0	1	1	1_!	
	-	0	1	01	1	0	1	1	0	1	1	15	
		0	1	0	0	0	1	1	1		i.		
		0	1		- 1	Ĩ	1	0	0	0	-		
		1	0	00	1	1	-1	1	× .	-	0	120	
		tit		21	1	1.			0	-		121	
		1.1	<u> </u>					0	0		,	7	
b)	Describ	e the	wo	rkin	g of 4 b	it uni	versal	shift r	egiste	r.			6M
					_				_				
Ans:													
1													

SUMMER-19 EXAMINATION Model Answer

Subject Code:

SUMMER-19 EXAMINATION

Model Answer

_Subject Code:

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

Q. No.	Sub Q. N.	Answers	Marking Scheme
6.		Attempt any TWO of the following :	12- Total Marks
	a)	Design a mod-6 Asynchronous counter with truth-table and logic.	6M
	Ans:	MOD 6 asynchronous counter will require 3 flip flops and will count from 000 to 101. Rest of the states are invalid. To design the combinational circuit of valid states, following truth table and K-map is drawn:	
			Truth Table 2M

SUMMER-19 EXAMINATION

Model Answer

Subject Code:

SUMMER-19 EXAMINATION Model Answer

_Subject Code:

	$\frac{1}{14}$	
	Reset GAI Reset OB Reset OC	
b)	Design 1:8 de multiplexer using 1:4 de multiplexer	6M
Ans:		Desiį 3M

SUMMER-19 EXAMINATION 22320 Subject Name: Digital technique Model Answer Subject Code: - Yo Din Din · Y1 1:4 DEMUX - Y2 Truth **S2** ¥3 Table SI S₀ 3M B C. Sı So. _ Y4 Din - Y5 1:4 DEMUX • Y6 **S2** · Y7 Fig:1:8 Demultiplexer using 1:4 demultiplexer Data Input Select Inputs Outputs D **S**₂ Y7 Y4 Y₁ **S**₁ S₀ Y₆ Y₅ Y₃ Y₂ Yo D 0 0 0 0 0 0 0 0 0 0 D 1 0 D 0 0 0 0 0 0 0 D 0 0 0 0 0 0 D 0 1 0 0 0 D D 0 1 1 0 0 0 0 D 0 0 0 D 1 0 0 0 0 0 D 0 0 0 0 D 1 0 1 0 0 D 0 0 0 0 0 D 1 1 0 0 D 0 0 0 0 0 0 D 1 1 1 D 0 0 0 0 0 0 0 Fig: Truth Table of 1:8 Demultiplexer . c) Draw the circuit diagram of 4 bit R-2R ladder DAC and obtain its output voltage expression 6M Ans:

Subject Name: I	Digital technique	Model Answer	_Subject Code:	22320	
Vo	$= -\left(\frac{RP}{3R} \cdot \frac{VR}{2^4}\right)$	$b_0 + \frac{Rf}{3R} \cdot \frac{VR}{2^3} b_1 + \frac{Rf}{3R}$	$\frac{\sqrt{R}}{2} \cdot \frac{\sqrt{R}}{2^2} \cdot \frac{b^2}{2} + \frac{Rf}{3R} \cdot \frac{1}{3R}$	$\frac{\sqrt{R}}{2'}$ b3)	2M
V.	$= -\left(\frac{Rf}{3R}\right)\left(\frac{Vf}{2}\right)$	F) [8b3+4b2+2	b1+b0		

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT / CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

(ISO/IEC - 2700 ·tified)

MAHARASHTF (Autonomous)

Subject Name: Digital Techniques

Model Answer

Subject Code:

e: 22320

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answer	Marking Scheme
Q.1		Attempt any <u>FIVE</u> of the following:	10-Total Marks
	a)	Convert (D8F) 16 into binary and octal.	2M
	Ans:	Shep 1 D & F 1101 1000 1111 \rightarrow Binary $ \begin{array}{c} (D8F) = (1101100011111) \\ Shep 2 \\ $	1M 1M
	b)	Draw symbol, Truth table and logic equation of Ex-OR gate.	2M
	Ans:	EX-OR gate Symbol & Dr	¹ / ₂ M ¹ / ₂ M
		Logic Equation = $A\overline{B} + \overline{A}B \text{ OR } \land \bigcirc \square \square$ Truth Table:	
		InputsOutputABY	1M
		0 0 0	

700

tified)

		0	1	1		
		1	0	1	-	
		1	1	0		
		1	1	0		
c)	State the DeMorg	gan's T	heore	ms.		2M
Ans:	De Morgan's 1 st Theorem complem OR $\overline{A + B} = \overline{A}$ • De Morgan's 2 nd t Complement of pr OR $\overline{A \bullet B} = \overline{A} + \overline{B}$	nent of s \overline{B} heorem coduct is \overline{S}	sum is equa	s equal to pr l to sum of	oduct of their individual complements. their individual complements.	1 st -1M 2 nd -1M
 d)	Convert the follo $Y = AB + A\overline{C} + BC$	wing ex	press	sion into sta	ndard SOP form.	2M
Ans:	$Y = AB + A\overline{C} + B$ Total variable AB 1 st Product term = 2 nd Product term = 3 rd Product term = Y = AB • 1 + A\overline{C} • Y = AB(C+\overline{C}) A\overline{C} • Y = AB(C+\overline{C}) + A\overline{C} •	$AB (C)$ $AB (C)$ $= A\overline{C} (B)$ $= BC (A)$ $= BC (A)$ $= BC (B + \overline{B}) + C$ $= AB\overline{C} + C$	is mis is mi is mi • 1 • $BC(A$ $A\overline{B}\overline{C}$	ssing) issing) ssing) A+Ā) + <u>ABC</u> + Ā	BC $(: A + \overline{A} = \overline{A})$	2M
e)	Draw symbol and	d write	truth	table of D	and T Flip Flop.	2M
Ans:	(Note: Symbol w	ith othe	r trig	gering met	hod also can be consider)	1M
AII5.	(hm)	D F ymbol Clock Tauth H Input D L	lip F D C	Tree Control (VL M)	T FF symbol $(Y_2 M)$ T T T Qnti Clock FF Qnti Truth table $(Y_2 M)$ Truth table $(Y_2 M)$	1M 1M Truth table
f)	Write down num	ber of f	lip flo	ops are req	uired to count 16 clock pulses.	2M
 Ans:	No of states= no.c	of clock	pulses	s = 16		2M

	$2^{n} = m$	
	n = no.of flip flops required	
	m = no.of states	
	$2^{n} = 16$	
	n = 4	
	4 flip flops are required to count 16 clock pulse.	
g)	List the types of DAC	2M
Ans:	1) Binary weighted DAC	1M each
	2) R –2R ladder network DAC	

Q.2		Attempt any <u>THREE</u> of the following:	12-Total Marks
	a)	Perform the subtraction using 2'S Complement methods. (52) ₁₀ – (65) ₁₀	4 M
	Ans:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Conversio n-1M each Complime nt-1M
		Acoust is mightive and its 20 town i.e To get final answer take 20 of Result 1110011 + 1 = 0001100 $= 1000 + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$	Final answer- 1M
	b)	Simplify the following Boolean Expressionand Implement using logic gate. $AB\overline{C}\overline{D} + AB\overline{C}D + ABC\overline{D} + ABCD$	4M

Ans:	$AB\overline{CD} + AB\overline{CO} + ABC\overline{D} + ABCO$ (2mk)	2M
	= $AB\overline{C}(\overline{D}+D) + ABC(\overline{D}+D)$ (": $A+\overline{A}=L$)	
	= ABC - 1 + ABC - 1	
	= ABZ + ABC "." (A · 1 = A)	
	$= NB(\bar{c}+c) \qquad \qquad$	
	$= AB \cdot I \qquad (A \cdot I = A)$	
	- 40	
	Implementatation (2mks)	2M
	$\begin{array}{c} A \\ B \end{array} \longrightarrow \begin{array}{c} Y = AB \end{array}$	
	Minimize the four veriable logic function using K man	
c)	$F(A,B,C,D) = \sum m(0,1,2,3,5,7,8,9,11,14)$	4M
Ans:	f(A, B, C, D) = Zm(0, 1, 2, 3, 5, 7, 8, 9, 11, 14)	Kmap with place value-1M
	10 00 01 11 10 2 B = ==	Pair-1M
	$\begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	Answer-
	OIDA IN BE OF BC	2M
	11 1 1 1 I I DAD	
	10 H G ABCD	
	f(A, B, C, D) = A B + B C + B D F A D + A D C D	
	Implement the following function using demultiplexer.	
d)	$f_1 = \sum m(0,2,4,6)$ $f_2 = \sum m(1,3,5)$	4M
	12 - <u>_</u> m(1,5,5)	

MAHARASHTI (Autonomous) (ISO/IEC - 2700 tified)

U)		iy to gray (uui tav	10.				-4141
Ans:	Truth Table	for 4 bit Bi	nary to G	ray code	e conve	erter					2M Truth
		Binar	y Input					Gray (Output		table
	B3	B2	B1]	B0	G3	(G2	G1	G0	
	0	0	0		0	0		0	0	0	-
	0	0	0		1	0		0	0	1	-
	0	0	1		0	0		0	1	1	-
	0	0	1		1	0		0	1	0	-
	0	1	0		0	0		1	1	0	
	0		0		1	0		1	1	1	Note:
	0	1	1		0	0		1	0	1	Kmon ia
	0	1	1		1	0		1	0	0	
	1	0	0		0	1		1	0	0	optional
	<u> </u>	0	0		1	1		1	0	1	
	1	0	1		1	1		1	1	1	-
	1	1	1		1 0	1		1 0	1	0	-
	1	1	0		1	1		0	1	1	
	1	1	1		0	1		0	0	1	-
	1	1	1		1	1		0	0	0	-
		$\mathbf{D} \mathbf{C}^2$	1		1	1		0	0	0	
			01 11 10	0	0 1 1	1 1	1	-			Logical diagram
	G3=B3 K-MAP FO	R G2	B18	0 00	01	11	10	_			
			00	D	0	O	O				
			01	1	1	1	1				
			11	0	0	D	D				
			10	1	1	1	1				
	$G2 = \overline{B3}B2$	$+\overline{B2}B3$									
	=B3 XOR E	3 2									
	K-MAP FO	R G1:									

MAHARASHTF

(Autonomous)

	Truth Table									
	J K CLK Q					1M				
		0	0	t	Q_(no change)					
		1	0	t	1					
		0	1	t	0					
		1	1	t	\overline{Q}_{a} (toggles)					
					4, 55, 7]				
	Working:									
	The JK flip flop is basically a gated SR flip-flop with the addition of a clock input circuitry that prevents the illegal or invalid output condition that can occur when both inputs S and R									
	are equal to logic level "1". Due to this additional clocked input, a JK flip-flop has four									
	possible input combinations,	"log	gic 1	", "logi	c 0", "no change" a	and "toggle".				
	Both the S and the R inputs of	of the	e pro	evious S	SR bistable have no	w been replaced by two				
	inputs called the J and K input	its, 1	esp	ectively	after its inventor J	ack Kilby. Then this equates				
	to: $J = S$ and $K = R$.									
	The two 2-input AND gates	of th	e ga	ted SR	bistable have now	been replaced by two 3-				
	input NAND gates with the t	hird	inp	ut of ea	ch gate connected t	o the outputs at Q and Q.				
	This cross coupling of the SF	R flip	o-flo	op allow	s the previously in	valid condition of $S = "1"$				
	and $R = "1"$ state to be used	to pr	odu	ce a "to	ggle action" as the	two inputs are now				
	interlocked.									
	If the circuit is now "SET" the J input is inhibited by the "0" status									
	Of Q through the lower NAND gate. If the circuit is "RESET" the K input is inhibited by									
	the "0" status of Q through the upper NAND gate. As Q and Q are always different we can use them to control the input. When both									
	inputs J and K are equal to logic "1", the JK flip flop togeles									
	Describe the working of 4 bit SISO (serial in serial out) shift register with diagram									
d)	and waveform if input is 01101.									
	-									
Ans:	Diagram:(use SR or JK or D	type	flip	o flop)			1M			
	Serial	o I	_		1 0	1 .				
		•	D							
	FFA		F	FB	FFC	FFD Serial Data out				
	CLK		С	LK	CLK	CLK				
	Working:									
	The DATA leaves the shift register one bit at a time in a serial pattern, hence the									
	The SISO shift register is on	e of	nı I the	simple	st of the four config	gurations as it has only three				
	connections. the serial input	(SI)	wh	ich det	ermines what enter	is the left hand flip-flop. the				
	serial output (SO) which is	s tak	en	from th	ne output of the r	right hand flip-flop and the				
	sequencing clock signal (Clk	t). T	he l	ogic cir	cuit diagram below	shows a generalized serial-				
	in serial-out shift register, Ou	itput	of	FFA is	Q ₄ ,FFB Q ₃ ,FFC Q ₂	and FFD is Q_1				

(Autonomous) (ISO/IEC - 2700

MAHARASHTI

tified)

(ISO/IEC - 2700 :tified)

MAHARASHTF (Autonomous)

	Effect of power	Stored info	ormation is retained only	y as	No effect of power on stored					
		wer is on.		information						
	applications	For tempo	rary storage		For permanent storage of					
					information					
	ii)EPROM with EEPROM.									
	Parameter		EPROM		EEPROM	two point				
	Stands for	Erasable Programable	Read-	Electrically Erasable	each)					
	Stunds for		Only Memory	Read	Programmable Read-Only					
			Omy Wenter		Memory.					
	Basic		Ultraviolet Light is us	ed to	EEPROM contents are					
			erase the content of		erased using electrical					
			EPROM.		signal.					
	Appearance		EPROM has a transpa	rent	EEPROM are totally					
	FF		quartz crystal window	at the	encased in an opaque plastic					
			top.		case.					
	Technology		EPROM is modern ve	rsion	EEPROM is the modern	1				
	8,		of PROM.		version of EPROM.					
b)	Describe the worl	king princip	al of guagagina annro	vimatic		AM				
•••	Describe the work	king princip		·						
Ans:	Note: Other releva	ant diagram	and explanation also ca	an be co	onsidered.					
	Diagram:									
		0	ffset voltage = $1/2$ LSB = 0.5		1 F 1 = 1 = 1 = 1 = 1 = 1					
			V. 9_		1 0 1	2 M				
	An	alog			p market					
	volta	age V_a	D\A Conv	erter						
			•Vi	-	I set (
		74	-7 +		E GREW O					
			Company							
			Comparator	13 100	Chase and					
		Volume LSB d								
			Programme		- T					
				ner						
		1	Self-me							
		CI	o ook		- //					
	11	CI CI	UCK		11.00					
	Working:									
	The successive app	proximation	A/D converter is as sho	wn in fi	ig. An analog voltage (Va) is					
	constantly compar	ed with volta	age Vi, using a compara	tor. The	e output produced by					
	comparator (Vo) is applied to an electronic Programmer. If Va=Vi, then Vo=0 & then no									
	conversion is required. The programmer displays the value of Vi in the form of digital O/P. But if Va Vi, then the O/P is changed by the programmer. If Va> Vi, then value of Vi is									
	increased by 50% of earlier value. But if Va< Vi, then value of Vi is decreased by 50% of									
	earlier value.									
	This new value is	converted in	to analog form, by D/A	convert	ter so as to compare it with Va					
	again. This proced	ure is repeat	ed till we get Va=Vi. A	s the va	lue of Vi is changed					
	successively, this i	method is ca	lled as successive-appro	oximatio	on A/D converter.					

BOARD OF TECHNICAL EDUCATION

tified)

MAHARASHTI (Autonomous)

BOARD OF TECHNICAL EDUCATION

MAHARASHTI (Autonomous) (ISO/IEC - 2700

tified)

Ans:	Binary to Gray Code	1M each
	(11001101)2 = (10101011) Group cade	conversion
	101011	
	Binowy to Excess-3 Code	
	Stept : Binasy to Decimal	
	(11001101)2 to Decimal	
	$(11001101)_{2} = 1x2^{7} + 1x2^{6} + 0 + 0 + 1x2^{3}$	
	$+ 1x2^{2} + 0 + 1x2^{0}$	
	= 128 + 64 + 8 + 4 + 1	
	= (205)10	
	Step 2: Decimal to BCD	
	2 0 5	
	Add 3 + 0011 0011 0011	
	0101 0011 1000 -> Excess 3	
	code	
	(ii)Perform the BCD Addition.	2M
	$(17)_{10} + (57)_{10}$	
Ans:	$(17)_{10}$ 0001 0111	
	$(57)_{10} + 0101 0111 (1/2 \text{ M})$	
	0110 1110	
	Valid Invalid	
	BCD BCD(1/2 M)	
	ADD 0110 TO Invalid BCD	
		¹ / ₂ Each
	1 11	sten
	0110 1110	step
	+ 0000 0110	
	<u>01110100</u> (1/2 M)	
	7 4	
	$= (74)_{10}$ (1/2 M)	
	(III)Perform the binary addition.	2M
	$(10110 \bullet 110)_2 + (1001 \bullet 10)_2$	
A	10110 110) (1001 10) (100000 010)	214
Ans:	$10110.110)_2 - (1001.10)_2 = (100000.010)_2$	2111
	11111	
	10110 110	
	\pm 1001 10	
	$\frac{+1001.10}{100000010}$	
(h)	Design a Abit ripple counter using IK flip flop, with truth table and waveforms	6M
(U)	Design a 401t hpple counter using JK hp hop, with truth table and wavelorms.	UIVI
Ans:		2M
	Circuit Diagram:	

(Autonomous) (ISO/IEC - 2700

MAHARASHTF

BOARD OF TECHNICAL EDUCATION

MAHARASHTI (Autonomous) (ISO/IEC - 2700

tified)

		$= -5 (1*1/2 + 0 + 1*1/2^{3} + 1*1/2^{4})$											
		= -5 (1*1/2 + 1*1/8 + 1*1/16)											
		= -5 (0.5 + 0.125 + 0.0625) = 3.4375 V											
		Vo = 3.4375 V 2 1001											
		2. 1001 Vo = - VR (B1 2 ⁻¹ + B2 2 ⁻² + B3 2 ⁻³ + B4 2 ⁻⁴)											
		$\mathbf{v}_0 = -\mathbf{v}_K (\mathbf{D}_{1,2} + \mathbf{D}_{2,2} + \mathbf{D}_{3,2} + \mathbf{D}_{4,2})$ = $-10 (1*1/2 + 0 + 0 + 1*1/2^4)$											
		$= -10(1^{*}1/2 + 0 + 0 + 1^{*}1/2)$ = -10(1*1/2 + 0 + 0 + 1 *1/16)											
		$= -10(0.5 \pm 0.0625)$	= 2.8125V										
		$V_0 = 2.8125 V$											
-						12-Total							
Q.6		Attempt any <u>TWO</u> of the follow	ving:			12-10441							
			C			Marks							
			T 1	41. 6.11. •	• • •								
		(i) Pagia Catag	L logic family	on the following	points.								
		(1) Dasic Gales (ii) Propagation dealy											
	(a)	(iii)Fan out				6M							
		(iv)Power Dissination											
		(v) Noise immunity											
		(v) Speed power product											
	Ans:												
		Parameter	TTL	CMOS	ECL	1M Each parameter							
		Basic gates	NAND	NOR/NAND	OR/NOR								
		Propagation delay	10	70-105	2								
		Fan out	10	50	25								
		Power Dissipation	10mW	1.01mW	40-55mW								
		Noise Immunity	0.2V	5V	0.25V								
		Speed Power1000.7100Product											
	(b)	Design a BCD adder using IC 7483. 61											
	A												
	Ans:	(Note: Labeled combinational circuit can be drawn using universal gate also)											
		• 4-bit binary adder for initial addition											
		Logic circuit to detect sum greater than 9											
		• One more 4-bit adder to add 0	110201102 in t	he sum if sum is g	greater than 9 or c	arry is 1							
		2) The logic circuit to detect sum greater than 9 can be determined by simplifying the											

tified)

١

MAHARASHTF

(Autonomous)

